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Rank-£ cartesian-tensor spherical harmonics are defined recursively by the Clebsch—
Gordan coupling of rank-(k -- 1) tensor spherical harmonics with certain complex basis
vectors. By taking the rank-0 tensor harmonics to be the usual scalar spherical
harmonics, the new definition generates rank-1 harmonics equivalent to the vector
spherical harmonics commonly employed in the quantum theory of angular
momentum. A second application of the definition generates new rank-2 harmonics
which are orthogonal transformations of the symmetric and antisymmetric rank-2
harmonics defined by Zerilli (1970). Continued application of the definition generates
new rank-f£ harmonics which are orthogonally related to tensors used by Burridge
(1966). The main advantage of the new tensor harmonics is that the numerous standard
properties (for example, completeness; orthogonality; gradient, divergence and curl
formulae; addition formulae) of scalar and vector spherical harmonics, generalize,
essentially unchanged in form, to the rank-£ case. Furthermore, the recursive definition
allows systematic evaluation of integrals of products of three tensor harmonics in terms
of Wigner coeficients, the latter immediately implying selection rules and symmetries
for the integrals. Together, these generalized properties and coupling integrals permit
straightforward spherical harmonic analysis of many partial differential equations in
mathematical physics. Application of the new harmonics is demonstrated by analysis of
the tensor equations of Laplace and Helmhotz, stress—strain equations for free vibrations
of an elastic sphere, the Euler and Navier-Stokes equations for a rotating fluid, and the
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196 R. W. JAMES

magnetic induction and mean-field magnetic-induction equations for a conducting
fluid. Finally, the method of Orszag (1970) for the fast computation of spherical
harmonic coefficients of nonlinear interactions is generalized for the tensor-harmonic
case.

1. INTRODUCTION

The use of spherical harmonic expansions to solve partial differential equations in spherical
coordinates, is common to a wide variety of fields. The partial differential equations are thereby
reduced to spectral form—a spherical analogue of the Fourier transform method. Common
examples are the spectral forms of the equations of fluid mechanics, particularly in meteoro-
logical and geomagnetic-dynamo contexts (Elsasser 1946; Takeuchi & Shimazu 1953; Bullard
& Gellman 1954; Silberman 1954; Kubota 1960; Baer & Platzman 1961; Merilees 1968;
Elsaesser 1966a, b, 1968; Gibson, Roberts & Scott 1969; Lilley 1970; Kropachev 1971; Roberts
19772; Gubbins 1973; Yabushita 1973; Pekeris, Accad & Schkoller 1973; Frazer 1974). In the past,
the task of constructing spectral equations has often been non-systematic, time-consuming and
algebraically cumbersome if not intractable. The present paper describes a systematic and
concise method for constructing spectral equations. For example, the spectral form of the
Navier—Stokes equation is difficult to construct by other methods, and only special cases appear
in the literature (see §7 (d)). However, the spectral form of the general Navier—Stokes equation
becomes almost self-evident once the background theory of the present paper is mastered. This
theory is based on a new definition for arbitrary-rank cartesian-tensor spherical harmonics. The
definition has the advantage that numerous known properties of scalar and vector spherical
harmonics generalize, essentially unchanged in form, to the arbitrary-rank case. The method
relies heavily on the properties of Wigner coefficients, and to understand the method in detail, the
reader will require some knowledge of 3-j, 6-j and 9-j coefficients. Concise but comprehensive
lists of properties can be found in the texts of Brink & Satchler (1968), and Rotenberg, Bivins,
Metropolis & Wooten (1959).

The use of Wigner coeflicients to form spectral equations is not unique to this paper, having
been previously applied to the vector equations of atmospheric oscillations (Jones 1970) and
magnetic induction (James 1974). But the method of the present paper allows straightforward
inclusion of physical tensors such as stress, anisotropic electrical conductivity, anisotropic mean-
field-electrodynamics a-effect, etc. Furthermore, the method allows a simpler approach than
otherwise possible to commonly occurring vector and scalar fields which are contractions of
higher order tensors—the inertial and viscous terms in the Navier—Stokes equations being
examples. Section 7 of this paper illustrates the method applied to the tensor Laplace and
Helmholtz equations, and equations of elasticity, fluid mechanics and mean-field magneto-
fluidmechanics.

Before proceeding, note that the use of spectral equations is not always a practical way of
solving partial differential equations. The spectral method is ideal for a solution which is only
a small perturbation about a state of spherical symmetry. But on other occasions, a large number
of spherical harmonics may be required to adequately represent a solution, or to determine
whether or not a solution exists. Such convergence problems have become notorious in geo-
magnetic dynamo theory (Gibson et al. 1969; Lilley 1970; Gubbins 1973), and only recently have
Roberts (1972), Gubbins (1973) and Pekeris e al. (1973) shown the spherical harmonic approach
to be viable in some circumstances. The obvious alternative to spherical harmonics as a numerical
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NEW TENSOR SPHERICAL HARMONICS 197

method is a finite-difference grid covering all independent variables. The spectral method has
several important advantages. No mapping of the sphere is needed, so that difficulties of finite-
difference methods near the poles are eliminated, angular derivatives are treated exactly, and
some boundary and derivative conditions can be automatically satisfied. In addition, conserva-
tion laws are preserved and aliasing errors blocked. These advantages are discussed in detail by
Platzman (1960), Baer & Platzman (1961), Elsaesser (1966a) and Merilees (1968). A direct
comparison by Elsaesser (19664) found the spectral method to be about twice as efficient in
obtaining a given level of accuracy when integrating certain weather prediction equations. This
result is not generally true. Indeed, until recently, a major drawback to the spectral method was
the amount of time required to compute the spectral coefficients of nonlinear interactions. How-
ever, Orszag (1970) has shown how to significantly reduce this amount of computation to be
comparable with finite-difference methods. Section 8 of the present paper shows how to generalize
Orszag’s results to representations which use the new tensor spherical harmonics.

2. DEFINITION OF THE TENSOR HARMONICS

Consider the complex reference vectors e, =e,, e; = —27%(e, +ie,), e_; = 27¥(e, —ie,),
where e,, e,, e, are cartesian reference vectors. The general rank-% tensor surface harmonic
Yoo u a function of colatitude 6 and east-longitude ¢, will be defined recursively by the
Clebsch-Gordan coupling of related rank-(k—1) tensor harmonics and e, (=0, +1).
Specifically,

Y= ()OS (0 BNV e, (2.1)
where the rank-(k—1) tensor harmonic Y% . is similarly defined in terms of rank-(k — 2)
tensor harmonics Y2 ..

The 2 x 3 array in (2.1) is a Wigner 3-j coefficient, and is zero unless |my| < ny, |my| < 1y,
|#| < 1, and m; = my— p. Thus the summation in (2.1) contains only three terms, and, for given
Ny, ..., 1y, there are 2ny+ 1 tensor harmonics corresponding to my = —ny, ..., n,. The 3-j coefficient
in (2.1) is also zero unless ny, n;, 1 satisfy the triangle inequality |ny— 1| < n, < |2+ 1|. The
recursive nature of (2.1) thus implies that, for a non-trivial harmonic,

So, for given n, and m,, there are at most 3* distinct non-zero rank-£ tensor harmonics defined
by (2.1).

For conciseness, it will be useful to introduce some abbreviations. First, the notation in (2.1)
is such that superscript m; generally corresponds to a first-subscript »;. Similarly, in later sections,
superscripts M; and m,, correspond to subscripts N; and n,,. Thus, unless such correspondences
break down, m-superscripts will be omitted. Secondly, the string of parameters n;, 7,4, ..., 24
will be abbreviated to n;(k). Thirdly, zero subscripts will often be omitted so that » and m are to
be regarded as identical to n, and m,. Finally, define

A(a,bye,...) =[(2a+1) (26+1) (2¢+ 1) ]%
18-2
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198 R. W. JAMES

With these abbreviations in mind,
(—)mime =1,

An(R) =[(2n+1) (20, +1) ... (20, + )13,
and definition (2.1) may be rewritten as

1
Ym=hwmwzﬁ m )mwm. (2.2)

my, p \M =My — [

As a starting point for the recursive definition, the rank-0 harmonics ¥, will be identified
with the usual scalar complex spherical surface harmonics Y7'(6, ¢), normalized as in James
(1973). Equation (2.2) then defines vector spherical harmonics Y, identical to the Y}, of
James (1973) and the Y,, ,, ,, of Edmonds (1957), and (47)? times the Y7, ; of Brink & Satchler
(1968). Continued application of (2.2) generates higher order tensor harmonics in terms of the e,
basis vectors. The general result, easily derived by induction over £, is

Yn(k)= E KY,’{}Ckeﬂk...eh, (23)
Mygeees Mk
My ooy Bk
where K= ﬁ (= )mi-r—mi-iA(n;_,) (ni'l s 1). (2.4)
i=1 TV \m_y —my =y

The result (2.3) is useful for evaluating the cartesian components of Y, and shows that ¥,
depends on scalar harmonics of degree n;, only.
In special cases, the constant K in (2.3) is easily evaluated. In particular, we find

Yh o= B}Leﬂ, (2.5)
Y((]],I,O = "5/~/3,
Y8,1,1,0 = —ig/\/ﬁ’

5=3(-)re.e, (2.6)

where 0} is the Kronecker delta;

is the unit dyadic; and

1 1 1
e=1y6 % ( )e e e
J s s o \1 Mo M3 2 g P Y

is the rank-3 alternating tensor.

3. BASIC PROPERTIES

Starting with the known properties of the scalar and vector harmonics Y, and Y, the
recursive definition (2.2) implies, by induction over £, a multitude of useful properties for the
rank-k tensor harmonic Y. The sample list of properties given in this section was derived from
known properties in the works of Edmonds (1957), Brink & Satchler (1968), and James (1974).
These known properties can be retrieved by putting £ = 0 and identifying n, and my with n and m.
Only brief outlines of proofs will be given, detailed proofs being worthwhile exercises for inter-
ested readers. Throughout the remainder of this article, the symbols f, —and * represent trans-
pose, complex-conjugate and complex-conjugate-transpose respectively; the generalized dot
product is defined by

y oo €t €y oo €x = 08} ... ORE; (3.1)
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NEW TENSOR SPHERICAL HARMONICS 199

dQ = sin 6 dfde; f represents a function of the radial distance r; and

i_,_’ﬁi‘_l’ if n=n"4+1,
o = dr r
t -(—i——il if n=n-1
dr r’ - ’
p =2, 2d nn+i)
" dr2 rdr rz

are differential operators acting on f. A rule of thumb worth noting for the differentiation
properties which follow, is that the subscript # on 0 is the last subscript of the tensor harmonic
being differentiated, and the superscript »’ on 0 is the last subscript of the tensor harmonic
resulting from differentiation.

Orthogonality

The known orthogonality properties of 3-j coefficients and scalar spherical harmonics combine
to give the rank-k orthogonality property

1
E f Yn(k)* . YN(k) df = é‘ﬁg 3%5‘ é\% (3.2)

Completeness

The orthogonality of 3- coefficients and the completeness of scalar spherical harmonics allow
any rank-k tensor F,(0, ¢), which is continuous over the unit sphere (r = 1), to be expanded as

F(k)(63 ¢) = n(%an(k) Yn(kr<0: ¢): (3'3)
where, by (3.2), ’

1
Fato = 1 f Y, a0* FpydQ.

The summation in (3.3) isforn = 0,1,2,...; |m| < n; and n; ({ = 1,...,k) satisfying the triangle
conditions in § 2. This completeness property may be extended to discontinuous tensors satisfying
appropriate Dirichlet conditions (MacMillan 1958, p. 386).

Complex-conjugate

Using an appropriate symmetry property of 3-j coefficients, the known rank-0 result

generalizes to
Ymk) — (_)n+nk+m+k ;6"?5 (34)

An immediate implication of (3.4) is that, if F;) in (3.3) is a real function,

P = (=)mHmitm kB,

Gradient formulae

The standard gradient formula generalizes by straightforward induction to

VifY,wl = = G(nk, Mier1) Yot a%*lf: (3.5)

Nk +1

n, Ny, 1
where Gl ) = (=)dlme) (¢ ).
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Selection rules for 3-j coefficients restrict the sum in (3.5) to at most two terms corresponding to
ny,.1 = ny, = 1. Evaluation of the relevant 3-j coeflicients gives

. s if myyy =m—1,
G(mgs Myeyq) = G+ 3 ~ (me+ 1)}, if myy = m+ 1, (3.6)
0, otherwise.

The special rank-0 case with /= r® generalizes to
VIrY ] = [m(2m+ )11 Yo, 15 (3.7)

which, in turn, generalizes to

I times

—— on, + 1)1 T3
V.. V[rY,p = [572%;’0_—51%_‘1‘)—,] %Y ), mg—1, ..., mp—te

The special rank-0 case with f = r—»—1 generalizes to
VIr =Y ] = [(m+1) (2mg + 1)]Er=2Y g9,y 01, (3.8)

which, in turn, generalizes to

{ times

— Cmy+2D)1E
V... V[rm1Y, ] = [W =Y 0, mt 1, e g
L-operator
Let L = —ir x V, where r is the radial position vector. Then, by straightforward induction
from the known rank-0 result,
LYn(k) = [nk(nk‘ + 1)]% Yn(k), ng* (3'9)
Divergence

The standard divergence formula generalizes by straightforward induction to

Ve[ fYnern] = Gngs meya) Yoo O, 1 S, (3.10)
where G is given by (3.6). We note, in particular, that the rank-£ tensor-harmonics with
N1 = Ny —there are at most 3%~1 of them —are always solenoidal.

Curl
The general rank-(k + 1) result is
VX[ fYpesn] = ,E C (s Moy Mrey1) Yo, n} Haﬁ’,ﬁ,ﬁf: (3.11)
e+1
, ;. , n, n 1
where Gl iy ) = (=)WietiyO Al Gl [ 10 1 | (312
+

The 2 x 3 array in (3.12) is a Wigner 6-j coefficient. Triangle inequalities for 3-j and 6-; coeffi-
cients restrict the sum in (3.11) to at most 2 terms, corresponding to n;,; = n;,; + 1. Explicit
evaluation of the relevant 3-j and 6-; coefficients gives

g +1\
V x [fY n(k), nk—l] =1 (‘ézkm) Yn(k), ng 6:»”15—1 f;
1
VX[ fYm, n/c] = m [”i Y, np+1 Ot + (my, + 1) Y0, ngp—1 el WA (3.13)

n, \®
) Yn(k), nka%Hf-

2n,+ 1

V x [fYn(k), nk+1] =1 (
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The formula (3.13) can be easily derived by straightforward induction from the known rank-0
result. However, formula (3.11) is new, apparently even for the £ = 0 case, in that the coeflicients
in (3.13) are recognized to be 6-j coefficients. The proof of (3.11), without merely verifying that
it is equivalent to (3.13), is not simple, but can be carried out by combining the Gradient
Formula (3.5) with the vector-product coupling integral (4.3) in § 4.

The symmetries of Wigner coefficients allow (3.11) to be written in the alternative form

Vx[f¥ ), n;cﬂ] = 3 Cmy, My, Mieya) Yn(k+1)aZZi:f’ (3.14)

Nk +1

which will be useful for the applications in § 7.

Laplacian
By straightforward induction from the known rank-0 formula,
V[ fYuw] = Yuo Dy, S, (3.15)
a result also easily derived by combining (3.5) and (3.10) and noting

D, =ank ouk,

ng NE+1
Grad—-div
Combining (3.5) and (3.10)
V- [ fY ] = ,Z G (s My 41) G (Myes M1) Yot ) “aﬁ;,j“amﬁﬂf- (3.16)

Tr+1
The 3-j triangle inequalities restrict this sum to at most two terms with simple coefficients given
by (3.6).
Addition formulae

Let w be the angle between the directions defined by angle-pairs (64, ¢,), (6,5, ¢5). Use of 3-7
orthogonality allows generalization of the standard addition formula to

5 Yoo(0s, $2)* Y0 62) = (214 1) By, cos ),

and W2, YO0 2)* Yao(0s, 6) = (2my+1) By (€05 ) S
m
Here, P,(cosw) = Y3(w)[A(n)
is the Legendre polynomial, and
o = X (e'“l”'e"‘")*(em'”epk)
Py ooy Uk

is a rank-2£ generalization of the unit dyadic in (2.6).

Rotation of coordinate frame
Introduce Euler angles «, £, vy and rotation matrix elements
Dﬁﬂm( e _ﬂ: —06) = D%,M(O‘,ﬂ: 7):
= d% 3(B) eltma+dy),

defined as in Brink & Satchler (1968). Consider a new reference frame, defined by complex
reference vectors e, (# = 0, + 1), obtained by rotating the reference vectors e, (u =0, + 1)
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202 R. W. JAMES

through the angles «, £, ¥ (Brink & Satchler 1968, Figure 2). Let the point (r, 6, ¢) have coordi-
nates (7,0, ¢’) in the new frame, and let Y, be a rank-£ tensor harmonic at (¢’, ¢') in the new
frame. That is

n n 1
Y = (=)""A(n L Y, e,
= (=) ( )Eyiﬂl (m —my —p) Ymv €
where ¥} = Y2(0, ¢').
The standard contraction properties of rotation matrix elements allow the known relation
between Y, and Y, 4, to be generalized to the rank-k case:

Y'mk) = J%D%l,m(_"y’ _ﬂ: “0‘) Y%I:rb (3'17)
Y%l;) = ED'Z},M(O" ﬂ: 7) Ymk)' (3'18)
m

In rotation-group jargon, (3.17) and (3.18) mean that the 2z + 1 quantities Yy, (m = —n, ..., n)
constitute an irreducible spherical tensor of rank-n; that is, a basis for an irreducible representation
of the rotation group.

Polar components

Suppose that in the preceding rotation, we choose & = ¢, § = 6, y = 0. Then e; = e, and
e; = —&., = —27}(e,+ie,), where e,, e;, e, are the unit vectors in the directions of increasing
r, 0, ¢. Also, 0’ = 0, so that

Yoo, ¢') = An) o
Combining (3.17) with the rotated version of (2.3) and using standard symmetry properties of
rotation matrix elements leads to

Y= X Kdiul)e™e,..e,. (3.19)
Ly eves i
Here K = Aln) 1 (=) dn) (i it 1) (3.20
Mo TY\My My —p)?
with M=M= p+...+ 1y,

My = o+ oo+ iy,

Equation (3.19) shows that each polar component of Y, is proportional to dj 5 (0) e™?,
a quantity occasionally referred to as a ‘generalized spherical harmonic’. This generalized
spherical harmonic, and hence the polar components of ¥, can be rewritten in terms of the
derivatives of the scalar spherical harmonic Y} For £ > 2itis tedious and of no advantage to do
this, but appendix A illustrates the relatively simple and commonly occurring cases £ = 1 and
k=2,

Alternatively, the polar components of Y, can be found by multiple applications of the
operators V and L, in polar form, using properties (3.7), (3.8), (3.9). This procedure is very
tedious for £ > 2, but was used to check appendix A.

Equation (3.19) facilitates the evaluation of polar components, and also the application of
boundary conditions involving polar components. Two useful byproducts of (3.19) are

e, Yn(k) =n 2 G(nk: nk+1) Yn(k+1): (3'21)
k41
e Yooy = Gy, nya) Yo (3.22)
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The G-coefficients in (3.21) and (3.22) are given simply by (3.6), implying in particular that the
sum in (3.21) contains at most the two terms corresponding to n,,; = n, + 1. Correspondingly,
(3.22) implies that 3% of the rank-(k+ 1) tensor harmonics, namely those with n,,, = n,, are
tangential (on the left) to spheres centred at r = 0. But such harmonics are also solenoidal
according to (3.10). They are indeed the rank-(k+1) generalization of the toroidal vector
harmonics often used in the representations of divergence-free vector fields (see, for example,
Bullard & Gellman 1954).

The foregoing list is not exhaustive. For example, it could be extended to include tensor-
harmonic expansions of Dirac delta functions, inverse radii, spherical waves, etc. However, the
properties listed illustrate how generalization to the rank-£ case is effected, and are sufficient for
the applications in the remaining sections of this paper.

4. COUPLING INTEGRALS

The expansion of products of tensor functions in series of tensor harmonics requires evaluation
of integrals of products of three tensor harmonics. We will follow the notation of Bullard &
Gellman (1954) and distinguish different components of such products by subscripts «, 8, y.
Thus, extending the notation of earlier sections, n,(k) will denote the string n,,n,,, ..., 7;,; and
Y, o a rank-£ tensor harmonic.

The most basic integral of this type, evaluated independently by Adams (1900) and Gaunt
(1929), is, in terms of Wigner coefficients,

= f Y0¥y Yoy 42 = Al n 1) (za " '(')y) (’;:; ’;fﬁ ':nry) , (4.1)

The integral (4.1) is useful for expanding a product of two scalar functions. Two important
related integrals are

1
Z'ﬂ': J‘ Yna(l)' Ynﬁ(l) Ym(ﬂ) dQ = ( - )"a‘f'"m/l(na(l), nﬂ(l)’ ny)
Ny Mg 1) (M myp n)\ (7, ng ny)
4.2
X{nlﬁ ng ny}(O 0 0)\m, my m)’ (4.2)

and ZIE f Yo% Yo Yo 9 dQ = (= )metnstrrtl 634 (n, (1), np(1), m,(1))

Pa Pp Ty Mo Mg M\ (Pa ng m,
% 7;1"‘ Iilﬂ Zl" (0 0 0 ) (ma my m?,) > (43)
where the 3 x 3 array in (4.3) is a Wigner 9-j coefficient. The integral (4.2), evaluated by Jones
(1970), is useful for expanding dot products of vector functions in series of scalar harmonics, or
products of scalar and vector functions in series of vector harmonics. The integral (4.3), evaluated
by James (1974), is useful for expanding cross-products of vector functions in series of vector
harmonics.

We are more interested here in coupling-integrals involving tensor harmonics of higher rank.
General formula in terms of Wigner coefficients are readily obtained by combining (3.19) with
the known result

1 - » m _(n, mg m ng, ng N
| 2000) 88550 O) i 0) inememitag = (Lo T ) (0 ). (00

19 Vol. 281. A.
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which is valid provided
M, + M+ M, = 0. (4.5)
Constraint (4.5) is always satisfied, merely reflecting that all coupling integrals are scalar
quantities. However, simpler formulae can be obtained by using definition (2.2) to generate
coupling integrals recursively. This statement is illustrated below for the most common cases;
that is, where tensors are contracted to form scalars or vectors.
We will use notation such as

v 1
(7 (k)5 o mg(R); mp-m, (0); my) = fYna(k)' Y00 Vo049, (4.6)
1
(o (k)5 my g (K); mg' -, (0)5 m,) = — f Y00 Yo' Yo 0492, (4.7)
- 1 _
(1, (k)5 1y mg(k = 1)5 mym,(1)5 my) = = ana(k)' Y00 Yo, d 2. (4.8)

Consistent with the Wigner-Eckart theorem (see, for example, Brink & Satchler 1968), the
m-dependence of integrals such as (4.6) and (4.7) is contained in one 3-j coefficient. Furthermore,
(2.3) and (4.1) imply that such integrals are proportional to a 3-j coefficient with zero bottom-
row. Thus, we can write, for example,

(a3 1y (0 o, (0)3 ) = () myB) m0) (5 0 ) (e %2 M), (a)

m, mﬂ m.’,

(1) e8] 03 m) = (a8 om0 (= G0 ) (e ),
where the coefficients (n, (k) - ny(k) -n,(0)) and (n,(k) - n4(k)" - n,(0)) are independent of m,,, my, m.,.
We will call such coefficients ‘reduced integrals’. These reduced integrals are analogous to, but
an extension of, the concept of ‘reduced matrix elements’ in the quantum theory of angular
momentum. Note that in computations with (n,(k) - ns(k) *n,(0)), for example, ny, +ny5 +n, may
be assumed to be even, since otherwise the 3-j coefficient with zero bottom row in (4.9) is zero.
Integrals such as (4.8) may be ‘reduced’ by using (3.4). For example,

(no(K)5 My ng(k—1); mgm,(1)5 m,)
= (— )’ny+nw+my+1(na(k); ma'nﬂ(k - 1); mﬂ'ny(l); ”‘my)

— ([ — VR Rty +1 . 1), Bpa Mg-1p Piy) (P Rg n,
(Y bnarbmt1(n, (k) -k — 1) n7(1))(0 Y T )(m " _my).

The simplest recursive relations between the reduced integrals required for contracting
tensors to form vectors and scalars are

(rall = 1)1y 8) (1)) = (=il m) (20 G (= 1)y = 1) (0),
v (4.10)
(1) )" 2 (0) = (=)Ao (2 (= 1) gl = 1), 0))
(4.11)
(1) myll= 1) (1) = (=i (2= 1) mag=2)1my (1),
(4.12)
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(1) mylk = 1) my (1) = (=) ) (705 o = )7 = 1) (0),

! (4.13)
(1al8) 56) 1y (0) = 5 (=)o (Nymp) (0 20 N (g (8) gl = 1)- Ny,
v (4.14)

(2 s Dndo (). N 1)1+ (1)

iz AN, Ny)
x (N(k—1) -ny(k—1)-0(0)). (4.15)

(noc(k) nﬂ(k - 1) '717(1)) =

The results (4.10), ..., (4.13) are easily derived by combining definition (2.2) with the contrac-
tion properties of 3-j coefficients, and noting formulae such as (4.9). Results (4.14) and (4.15) are
not so straightforward.

The proof of (4.14) relies on combining the more basic results

n n 1
Yo = (=) ™A (ng) 3 ( s 1 ) Yo sk-€us

mg \Mg  —Myg  — M}
»
Y00 Yogh-p = 1\;‘1 (ny ()3 My nyg(k—1); myp- N(1); M) Y,
)
_ N N, N\ 57—
Ve, = (=AW (3 34 ) T,

with the rank-0 version of (3.2) and the 3-j contraction properties. The 6-j triangle rules restrict
the sum in (4.14) to at most 3 terms satisfying

|n,—1] < N<n,+1 and |n,—np < N < n,+ny
The proof of (4.15) relies on the more basic results
(1 (K) - np(k = 1) -1, (1)) = (m, (1) -1, (K) -5k — 1)),
Yo Yo = N(En (ny(k); my- N(k—1); M*-n.(1); m,) Yyg_y,
M

1 N, ng_ O\ (N =n 0
4—K-J‘szoc_l)-Yn,,oc_nd!) = (N(k—1)-ny(k—1)-0(0)) (Olc 1 O(k Vp 0) (M Jﬂ 0)’
N g 0y _ N+M Sng S—m,
(M my 0) = (=)VHMoR o3t A(ny),

and 3-j contraction properties.

The recursive relations (4.10), ..., (4.15) will be illustrated by deriving some new results for
coupling integrals involving rank-2 and rank-3 harmonics. These new results will be used in the
applications of § 7. Starting from the fundamental result (4.1) in the reduced form

<na(0) 'nﬂ<0) '71,),(0)) = A(na; gy ny):
results (4.10), ..., (4.15) imply (with the aid of 3-j and 6-j contraction properties)
n, N, 1
(1a(1) (1), (0)) = (=t Al (0, ml0)m {72 0o,
2

19-2
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which is the reduced form of (4.2);

(74(2) *n4(1) *n, (1))

= (=)retmagtnyA(n,, ny) {”"‘ M

L } (maa(1) -1, (1) -735(0)),

Pp Mg My
ngt+nsg A (p Ry o™ 1 Mo Mg 1
= (=)l (0,my (1) (72 ) (e ), (4.16)
(n,(2) *n4(2) -1, (0))
= % (= )mactnatny A( N, nj) {’]l\;; Zm 1 } (7(2) *m (1) * Ny )

y T

n, Ny, 1
= (—)”ﬁ+"25/l(na(2),nﬂ(2),ny) {”'y Ny, nZﬂ}’

ng 1 nyp
with the special case
(74(2) n4(2) - 0(0))
= ( — YP1atm My nﬂ 1 N2f AN .
(= dlon@) e 70 oo (4.17)
(4(3) np(2)"+m, (1))

n, Ny 1

= ( — Natnigtny 4
(el (1=

| (10(2) g (1) -, (1),

= ( - )na+n1a+nsa+nlﬁ+nyA (na(3)3 nﬂ(2>’ n‘y(l))

x{”a e 1}{”10; Nog 1]{”2(1 ng, 1 }
mp ng m) \nyy myg n) \ng, m,  ng)’
(n,(3) +n5(2) -1, (1))

N SN,

0
= 3 R (1,(3)- N(2) 1y (1)) (N(2) my(2)-0(0))

n n 1 na nﬁ 727,
=(._)na+nm+naa+nw+ny/1(na(g),n,,(z),nyu)){ 2 Moa } n, 1 mgb.  (4.18)
iy My, Mg

1 nyp ngy

The preceding paragraphs show that the reduced integrals can be written in terms of special
Wigner 6-j and 9-j coefficients. All these coefficients can be simply evaluated by using Table 4
and Appendices II and III of Brink & Satchler (1968), and Table 1 of James (1974). The 3-f
coefficients with zero bottom row are also simple factors (Brink & Satchler 1968, equation (2.35)).
Thus, the problem of evaluating coupling integrals reduces to one of evaluating the general

3-j coefficient
n, mng n,
m, mg m,)’

This quantity can be evaluated using standard computer subroutines based on the procedures
discussed by Melvin & Swamy (1957), Wills (1971), James (1973) and Winch (1974); or using
tables (Rotenberg ¢t al. 1959).

Many useful properties of the coupling integrals follow directly from the standard properties
of Wigner coefficients. Most important are the zero selection rules listed below.
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All coupling integrals are zero unless
(1) |my| < m,, etc.;
(ii) n,, ng, n, satisfy the triangle inequality;
M, Ny 1 satisfy the triangle inequality;
M1as Mo, 1 satisfy the triangle inequality;
etc.;
(iii) m,+mg+m, = 0.
(n4,(0)5 my*np(0); mgn,(0); m,) is zero unless
Ny, +ng+n, is even.

I~
A
—~

S

R
—~
— b
—_
-

5 My ng(1); mpen,(0); m,) is zero unless
(i) mye+nys+n,is even;
(i) 744, myp, 1, satisfy the triangle inequality.
n,(1); m, xng(1); myen,(1); m,) is zero unless
@ R AV Y
i) ny,+nys+ny, is even;
ii) 7y, nyg, ny, satisfy the triangle inequality.

THE ROYAL A
SOCIETY

(ny(2)5 my-np(1); mg-n,(1); m,) is zero unless
(i) ngy+ny5+ny, is even;
(i) 724, Myp, 1y, satisfy the triangle inequality;
(iii) 744, 7114, n, satisfy the triangle inequality.
(2); myng(2); mg-n,(0); m,) is zero unless
(i) 7oy tnyp+m,is even;
(ii) 7g4s Mag m, satisfy the triangle inequality.

PHILOSOPHICAL
TRANSACTIONS
OF

(n,(3)5 my - np(2)5 mg'-m,(1); m,) is zero unless
(i) mgy+ngs+ny, is even;
(ii) 7345 Mgy my, satisfy the triangle inequality;
(iii) 714, myp, n, satisfy the triangle inequality;
(iv) Mgy, Nap, 1, satisfy the triangle inequality.
(n4,(8) 5 my-np(2); mg-n,(1); m,) is zero unless
(i) ngy+ngs+ny, is even;
(ii) 734, n2p, 1y, satisfy the triangle inequality;
(iii) 794, ngp, 1, satisfy the triangle inequality.

Y B \

Such selection rules greatly reduce the number of coupling integrals needed in any given
problem. The numerous symmetry properties of Wigner coefficients also lead to symmetry
properties for coupling integrals, and on occasions these symmetries imply additional selection
rules. Details are left as exercises for the reader, but see James (1973, 1974) who discusses some
implications of Wigner symmetries for the integrals (4.1) and (4.3).

THE ROYAL A
SOCIETY

5. SYMMETRIC AND ANTISYMMETRIC RANK-2 TENSORS

In practice, one often deals with rank-2 tensors which are purely symmetric or antisymmetric,
or whose trace, symmetric and antisymmetric parts have particular physical significance. Thus,
it is desirable to be able to easily expand symmetric or antisymmetric tensors, and to be able to
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easily extract the symmetric and antisymmetric parts of a general rank-2 tensor. This section
shows that these aims are readily fulfilled by relating the rank-2 tensor-harmonics defined by
(2.2) to the tensor-harmonics defined by Zerilli (1970).

The general rank-2 tensor harmonic may be decomposed into trace (T'), antisymmetric (A)
and trace-free symmetric (§) parts according to the formula

Yo=T+A+S,

n

where T = g {trace of Y )},
§=3Yo+Yuo')— T, (5.1)
A =}(Y,0— Yao'"). (5.2)
Using (2.3), with £ = 2, and the orthogonality of 3-j coefficients, one finds
0 A(ny)
= ntny O m §n
T=(-) 340 Yyon. (5.3)
Therefore Y, is trace-free unless 7, = n. Evaluation of the integral
2= [ Yoo Yroae
allows T to be rewritten as
(=)™t MA(ny, Ny)
—
T = 8,,21% 3Ent 1) Y, nyn (5.4)
Expansion of A and § in terms of the Y-harmonics awaits the corresponding expénsion of
n(z) But
Yo = 3 (N(2); M*-n(2); m-0(0)5 0) Yo,
M
which (4.14) reduces to
t O\t N n n 1
Yo' = 5 (=)l M) [0 3 Yo, (5.5

By substituting (5.5) into (5.1) and (5.2), and choosing appropriate 6-j coefficients from
Table 4 of Brink & Satchler (1968), one finds (as expected) that corresponding to the 9 rank-2
tensors Y, (n, = n,n+ 15 ny = ny,ny + 1), there are 5 linearly independent trace-free symmetric
tensors and 3 antisymmetric tensors. These tensors are given explicitly in appendix B. Together
with the trace, these are precisely the tensor harmonics defined by Zerilli (1970), who extended
the definition of symmetric rank-2 tensors given by Mathews (1962). In slightly different notation,
Zerilli defined tensor harmonics

T = (=)md() 3 (0 " ) v, (5.6)

m —my —p@

Mgy fb
where th = (= )rA( ) (l 1 1 )eL e, and [=0,1,2.
o=y =)

Zerilli’s tensors are a complete orthogonal set for expanding rank-2 tensor functions on a sphere;
and for [ = 0, 1, 2, correspond respectively to trace, antisymmetric and trace-free symmetric
components. Since definitions (5.6) and (2.2) represent alternative Clebsch-Gordan couplings
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of the same irreducible spherical tensors Y72, e, , e, , the Mathews—Zerilli tensors are related to

the ¥’s via the definition of 6-j coefficients. Specifically, evaluation of the integral

shows that

T;izm;m=z(—)n+"a+'/1<n1,z>{1 ! 1}Yn®, (5.7)

m no o R
or, since this is an orthogonal transformation,

17 1
- _\n+naH )
Yn(z) Zt ( ) /1(721, l) :n ny 722} Tn, ng; me (5‘8)

Use of (5.7) and (5.8) immediately gives T (I = 0), A ({ = 1) and § ({ = 2):

1 0 1
T= (_)n+n2/]_(nl) {n ny 722} Tg?,)ng, ms (5_9)
{1 0 1)(1 o 1
= 340N {n n nz: {n N, nz} Yo, vy (5.10)
which is equivalent to (5.3) and (5.4);
11 1
= ( —\n+ne+1 o))
A = (- )t (ng, 1) ‘n 2 ”2} T s, mo
11 1)1 1 1
= %1 3/1(”13 Nl) {n n]_ n2} {n ]V-l nz} Yn, Nl; ng? (5.11)
1 2 1
S = (=)"tmA(ny, 2) {n 7 nz; T®,
1 2 1)1 2 1
== 54(ny, Ny) {n 7, ”2} {n N, ”2} 2 Noy g (5.12)

The relevant 6-j coefficients are simple factors obtainable from Table 4 of Brink & Satchler (1968).
Triangle rules for these 6-j coefficients restrict the sums in (5.10), (5.11), (5.12) to at most 3, and
usually less, terms (appendix B).

The ease with which one can transfer between the Zerilli harmonics and the Y-harmonics via
(5.7) and (5.8) makes the Zerilli harmonics a very useful supplement to the method of this paper.
For example, when working with a symmetric tensor, one can first expand it in terms of T9 .. ,,
(!l = 0 and 2), then rewrite itin terms of the Y-harmonics using (5.7), so that the properties of § 3
are applicable. Alternatively, when working with a tensor in the Y-formalism, (5.10), (5.11) and
(5.12) immediately give its trace, antisymmetric and trace-free components. Example (¢) of § 7
illustrates this intermixing of methods explicitly.

6. TENSOR HARMONICS DEFINED BY OTHER AUTHORS

In addition to the rank-2 Zerilli harmonics discussed in § 5, spherical harmonic representations
of tensor fields have been considered by Gel’fand & Shapiro (1956), Regge & Wheeler (1957),
Backus (1966, 1967), Burridge (1966) and Phinney & Burridge (1973). The Regge-Wheeler
tensors are only rank-2, and not all mutually orthogonal. Backus’ tensor-representation theorem
is also only rank-2, although not restricted to spheres. The Regge—~Wheeler and Backus tensors
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are essentially the result of applying the operators e,, L, V to the scalar harmonic Y?*. Therefore,
these tensors can be expressed in the Y-formalism using properties from § 3. Zerilli has expressed
the Regge~Wheeler tensors in his formalism and a simple relation exists (Burridge 1966) between
Backus’ theorem and some of the results of Burridge whose method is considered below.

The only general alternative to the method described herein appears to be the method of
Gel'fand & Shapiro (1956) extended for practical use by Burridge (1966). In the Gel’fand-
Shapiro-Burridge approach, the polar components of a rank-£ tensor-function F,(6, ¢) are
expanded in series of generalized spherical harmonics. In place of (3.3), Burridge writes (in
slightly different notation)

Fo(0,9) = X

Fjo-omsmdh o\ (0)eme, ... e (6.1)
# k

€,

s

n, m

where M = p; +... + 1, and e, (# = 0, + 1) are the complex spherical-polar basis vectors. Such

an expansion bears little resemblance to (3.3), but comparison of (6.1) with (3.19) shows that
Piein = 3 K'Fyg (62)

N5 vy Mg

where K’ is as in (3.20). Because of 3-f orthogonality, (6.2) inverts to
Fn(k) = X K,Fﬁl’"~’ﬂk;m/(2n+ 1).
When £ = 1, (6.2) simplifies to PR

1. n+1\% 2n+1\# n\%
Fnl’m=_|:(_2") Fn,n—1+( P) ) Fn,n+(§) Fn,n+1]:

Fg;m = n%Fn,n—l_ <n+ 1)%Fn,n+1:

. n+1\% 2n+ 1\ % n\%
F%’m:_l:(T) Fn,n—-l_(T) Fn,n+(—2') Fn,n+1]'

A minor disadvantage of the Burridge approach is apparent here in the mixing of the toroidal
term F, , with the non-toroidal F, ,.,. This point manifests itself again in § 7 (¢). The main
advantage of the new method based on definition (2.2) is that the numerous known properties
of scalar and vector spherical harmonics are readily generalized as shown in § 3. Moreover, the
complexity of the generalized properties does not increase with rank. Compare, for example, the
Gradient Formula (3.5), containing at most two terms, with the corresponding formula (11.1)
of Burridge (1966), the latter containing about £ terms in the rank-£ case. In addition, as shown
in §4, definition (2.2) allows systematic calculation of coupling integrals required for spectral
analysis of products of tensors. The Gel’fand-Shapiro-Burridge approach has apparently only
been applied to linear terms (Phinney & Burridge 1973), although use of (4.4) would permit
extension to nonlinear terms. In this regard, a slight numerical advantage of the Burridge
formalism will be seen later in § 8. That is, computation of the Burridge coefficient F#v - #kim for
a nonlinear interaction, requires marginally less arithmetic operations than computation of the
corresponding Y-coefficient F, ).

7. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

The main application of the new tensor spherical harmonics is in deriving the spectral form of
partial differential equations in spherical coordinates. This section begins with two simple appli-
cations to the tensor Laplace and Helmholtz equations. A third application to the equations of
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free elastic vibrations illustrates the advantage of supplementing the method with the rank-2
harmonics of Zerilli (1970), and allows comparison with the work of Phinney & Burridge (1973).
Finally, the theory is applied to equations from fluid mechanics and magnetofluidmechanics.
The ease with which the nonlinear terms in these equations can be analysed is a feature of the
new method.

(a) The tensor Laplace equation

Suppose it is required to find the general solution of
ViLyy = 0, (1.1)
where Lg,(r, 0, ¢) is a rank-k tensor function, £ > 0. Analogous to (3.3) we expand

Ly = 2 Loy Yo
n(k)
m

and employ property (3.15) to find that the spectral form of (7.1) is

D nkLn(k) =0,
with solutions L,p=r" and r-m
Thus, the general solution of (7.1) is
Lo =% (B 7% + Ly r="+7] Yoy, (7.2)
n
m

where E and I are independent of 7, 6, ¢. Note that such solutions can be made solenoibal by
using (3.10). For example, consider a rank-(k + 1) solution, L, ), obtained by replacing kin (7.2)
by k + 1. Equation (3.10) implies that L., will be solenoidal provided

In(lc), ng—1 — En(k), nptl = 0
for all n(k), m.

(b) The tensor Helmholtz equation
Suppose it is required to solve
VEHy) +p*Hyy = 0, p # 0, (7.3)

where H )(r,0, ¢) is a rank-£ tensor function. Proceeding as in (), the spectral form of (7.3) is

(an +p2) Hn(k) =0,

with solutions H,gy = Ju,(pr) and g, (p7),
where j and y are spherical Bessel functions. The general solution of (7.3) is thus
Hy) = n%;‘) [0 I (B7) + Loy Y, (7)1 Yoniios (7.4)
m

where E and I are independent of 7, 0, ¢.
Equation (3.10) and the standard recurrence relations (Antosiewicz 1965)

(dﬂr + ﬂ) {J'n_l(l")} ——p {jn(ﬁf)} ,

r ) \gua(pr)) T lya(pr)
s | e R A
20 Vol. 281. A.
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imply that a rank-(k + 1) solution H,, of type (7.4), will be solenoidal if
”%En(m, mm1 = — (M + 1) By yns
n%In(k), g1 = — (e + D)3 Ly, e

(¢) Free elastic vibrations

The method of this paper applies to any of the equations describing elastic vibrations in a
sphere; for example, those used to model Earth vibrations (Dahlen 1968). For conciseness we
restrict ourselves here to a simple illustrative subset of equations, namely the Fourier-trans-
formed momentum and elastic-constitutive equations considered by Phinney & Burridge (1973) :

—pw*u = V-1, (7.5)
7 =A(V-u)d+u(Vu+Vu'), (7.6)

Here, p is density, assumed constant; 7 is elastic stress, ©# displacement, » angular frequency,
4 and A Lamé constants, and d is the unit dyadic in (2.6).
Analogous to (3.3) we expand
u= 3 Un() Yn(l)'

n(1)

m
However, since t is symmetric, the number of spectral equations can be reduced by first
expanding 7 in Zerilli tensors. Thus, we write

T = Z T%{nz)ngrnz,m,

n, N2
m,l

where [ takes the values 0 and 2 only, representing trace and trace-free symmetric parts. To find
V- 7 we transform to the Y-formalism using (5.7):

1/ 1
T = n%) (—)mtne A(ny, 1) {n 7 n2= L G
m,l

The spectral form of (7.5) then follows directly from the divergence property (3.10):

17 1
—ptn = 3 (=) A, D |

T2y

n n } G(nl’ n2) a%;,’.s,l'{)’ Ng, M* (77)
1 2

To find the spectral form of (7.6), it is convenient to rewrite (7.6) as
T = (3A+2p) T(Vu) +2u8(Vu), (7.8)

where T and S represent the trace and trace-free symmetric parts of Vu. The gradient formula
(8.5) and the orthogonal Y-T transformation (5.8) combine to give the required spectral form
of (7.8):
, 17 1
Bogm = X' (=) Al 1) |

Ny

ny n2; G(nl, ”2) a:ﬁ Un(1)s (7'9)

(BA+2p, if [=0,
where A= { # .
2u, if [=2.
For fixed n and m, the spectral equations (7.7) and (7.9) generally represent nine equations in
the nine unknowns ujy, (, =nn+1), 70, . (=1 if =0; ny=nn+t1l,n+2 if [ =2).
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Wigner-coefficient selection rules restrict the sumsin (7.7) and (7.9) to at most three (and usually
less) terms, and ensure that the equations containing the toroidal displacement coefficients uj; ,
are uncoupled from the equations containing the non-toroidal coefficients u, , ;. More explicitly,
suppose 7, = nin (7.7) or (7.9). Then (3.6) requires n, = n+ 1; and the 6-j triangle inequality
|n—1| < ny < n+1thenrequires / = 2. Conversely, suppose n, = n+ 1and ! = 2in (7.7) or (7.9).
Equation (3.6) requires n, = n—2, n or n+2; the triangle inequality |n—1| < 7, < n+1 then
ensures 7, = n. Thus, the equations containing «,, ,,, 7% 11, » are uncoupled from those containing
Up, n+15 Tg?,nz,m (ny = n,n+2; [ = 0,2). The Wigner-coefficient constants in (7.7) and (7.9) are
identical and easily evaluated using (3.6), and Table 4 of Brink & Satchler (1968). Equations
(7.7) and (7.9) correspond to the nine equations labelled (3.11a—¢) and (3.154—f) by Burridge
& Phinney (1973), although toroidal-non-toroidal decoupling is not automatic in the
Burridge-Phinney approach.

(d) Navier—Stokes and Euler equations of motion
Euler’s equation of motion for an inviscid fluid moving in a rotating reference frame is

p(%—:;+v-Vv+2va) = —Vp+pF. (7.10)

Here, p is fluid density, v velocity, p pressure and F body force. The angular velocity £ of the
rotating frame will be assumed constant in the z-direction, so that by (2.5), its Y-expansion is
simply

2 =0Y9,.
If p is constant, or spherically symmetric, then use of the gradient formula (3.5) and the coupling
integrals (4.3) and (4.16) allows the spectral form of (7.10) to be written immediately as

v,
P ( at(l) + Vn(l) - Fn(l)) = G(n, nl) azlﬁn«», (7. 1 1)

where

Vo = Zﬂ(”a(lﬂ ma'”ﬂ(2)5 mﬂ‘”(l)§ m) vna(l)G(nlm nzﬂ) aﬁfﬁgvnﬁ(n
+202 3 (1, 05 0x 1, (1)5 My n(1); m) V. (7.12)

The summations in (7.12) are over all indices with subscripts @ and . For the special case in
(7.12), the cross-product coupling integral (4.3) simplifies to

. n, n 1)1 =n n
(1, 05 0 xn, (1) m, WD ) = (= yeomt @b () (1= 4 Mo 0o 7 Nomeage,
so that the second summation in (7.12) simplifies to a sum over #, only. Moreover, this sum con-
tains at most three terms satisfying the triangle inequality |n— 1| < n, < n+ 1. If p depends on
0 and @, then the left hand side of (7.11) is merely replaced by

avnﬂ(v . . (1) m
%pna T""Vnﬁ(D—Fnﬂ(D (na(0)3 ma'nﬂ(1)3 mﬂ'n(l)a 77’l)

The Navier-Stokes equation differs from (7.10) by the addition of viscous terms proportional
to V2v and V(V-v). The spectral coefficients of these terms are easily obtained from (3.15) and
(3.16). Another common addition for hydromagnetic studies is a Lorentz force proportional to
(V x B) x B, where B is a magnetic induction field permeating the fluid. Such a force is readily
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included by using the curl formula (3.14) and the cross-product coupling integral (4.3). Other
authors have apparently only considered special simplifying cases of the Navier—Stokes equation.
For example, Merilees (1968) considers the radial component of the vorticity equation with
hydrostatic equilibrium in the radial direction; Frazer (1974) considers incompressible flow
linearized for slow motions. Similarly, Backus (1967) linearizes the elastic equations of motion.

(e) Magnetic induction equations
The magnetic induction equation describing the interaction between a magnetic field B and
a conducting fluid moving with velocity v, is

0B[ot = V x (v x B) +7V2B, (7.13)

where 7 is the magnetic diffusivity. The spectral form of (7.13) is best constructed using the
coupling integral (4.3) and has been discussed in detail by James (1974). We merely note here
that use of the new curl result (3.14) allows the three spectral equations labelled (18), (19), (20)
by James (1974) to be written together as

a !’
(a_t - ”Dm) By = X Cnny, m3) O E,
L5

where the induced electric field coefficient is
E = Eﬂ (n(1) 5 My X mg(1); mp 1,35 M) Vo) By
o,

The present paper is more concerned with higher rank tensors. For example, in mean field
electrodynamics, the induction equation (7.13) can take the form (Roberts 1971)

OB[ot = V x (@ B+ by, VB) +74V2B. (7.14)

Here a,), the so-called ‘a-effect’, and by, are rank-2 and rank-3 tensor functions which represent
the interaction of small-scale velocity and magnetic fields to produce a contribution to the larger
scale field B. Several authors (see, for example, Roberts 1972; Stix 1971) have derived the spectral
form of (7.14) for various special cases. The spectral form of the general equation (7.14) is easily
obtained in the Y-formalism. One simply combines the gradient, Laplacian and curl results
(3.5), (3.15) and (3.14) with the coupling integrals (4.16) and (4.18), to obtain

0 N An
(5= 70n) Baiw = 5 Clomy 1) 03y [E, + By
n

Here the induced electric field coefficients are

Ea, = Zﬂ (noz(?’), ma'nﬂ(l); mp- 1, n15 m) dna(Z)Bnﬁ(l):
%y

Eb = Eﬂ (nm(3) 5 My* nﬂ(2) 5 mﬂ‘ n, ni; m) bna(SJG(nl/% nZﬂ) aﬁfﬁ Bnﬁ»(l)'

8. EFFICIENT COMPUTATION OF NONLINEAR TERMS

There are essentially two different types of spectral analysis problems which arise in practice.
The first type is linear in that it contains, at worst, products of known functions and only one
unknown function. A common example is the so-called kinematic dynamo problem of geo-
magnetism, where the induction equation (7.13) is solved for the magnetic field B, assuming the


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NEW TENSOR SPHERICAL HARMONICS 215

velocity v is known. Spectral analysis and finite differencing reduces such problems to linear
eigenvalue problems. The governing matrices are readily computed by using coupling integrals
such as those described in § 4, and this computation occupies an insignificant portion of the total
computing time.

The second type of spectral problem concerns nonlinear equations which contain products of
two or more unknown functions. For example, the full solution of the geomagnetic dynamo
problem requires that ¥ not be prescribed, but that the induction equation be coupled with the
Navier—Stokes, continuity and thermodynamic equations. Computation of the spectral coeffi-
cients of the nonlinear terms may then require a formidable amount of time and storage, especially
since such computation must be repeated at each point of a time/radius finite-difference grid.
Orszag (19770) has shown how such time and storage requirements may be significantly reduced,
and we will now show how Orszag’s method generalizes for tensor-harmonics.

Orszag’s method (originally devised for the vertical component of the atmospheric vorticity
equation), relies in part on use of the Fast Fourier Transform algorithm. The applicability of
this algorithm to tensor-harmonics relies on equation (3.19), which allows the ¢-dependence of
Y, €, -+ €y, to be isolated in the single term e™4, The generalization of Orszag’s method will
be illustrated by considering the exterior product of two vectors g, by, to form a dyadic. This
example illustrates the approach to the general coupling problem, which is only notationally
more complex. The most commonly occurring cases are simpler. Consider then the product

apby = 3 %0 Yo, (8.1)
n(2), m
where b = 3 (1(2); 1, (1); my1y(1)5 1) b
o,
= 2 (n(2); m‘”ﬁ(l)Q mﬂ'”a(l)Q m,) Apyl1) bnﬁ(v- (8.2)

a, B
The problem is to compute the spectral coefficients x, ) (2 = 0,1, ...;|m| < n;|n—1| < ny < n+1;
|ny— 1| < my < ny+1), given a,q) and b ).

In practice, finite truncation levels must be introduced for the range of n,, ns. For simplicity,
suppose n, = 0, ..., N; ny = 0, ..., N. Selection rules for the integral (4.16) then imply that the
spectral coefficients x, exist in the range n = 0, ..., 2N; although they would usually only be
required for n < N. Further, from (3.4),

Ky = (=) mEmtmy, (8.3)

so that it is sufficient to consider the range 0 < m < n.

Assume firstly that we compute x,,) using (8.2). The number of multiplications required by
each parameter is (i) at most 3 for each of n,, and ny; (ii) n + 1 for m, with n ranging from 0 to N;
(iii) 2n,+ 1 for m,, with n, ranging from 0 to Nj; (iv) at most 2z, +1 for n,, corresponding to the
range |n—n,| to n+n,. Selection rules for 3-j coefficients fix m; = m —m,. This gives a total of

N N
323 (n4+1) Y (2n,+1)2 ~ 6N,
n=0 ng=0

real x complex x complex multiplications, each of which is equivalent to 6 real multiplications.
Selection rules for 3-j coefficients with zero bottom row —see § 4 ~require n,, + 7,4+ n, to be even,
reducing the number of terms in (8.2) by a factor of 2. Thus the total number of real multiplica-
tions is about 18 N5. For each 6 real multiplications, (8.2) involves a complex addition, or 2 real
additions; and thus a total of about 6 ¥° real additions.
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Since values of N greater than 10 occur in practice (for example, in meteorology, Baer &
Platzmann (1961) use N = 19; Elsaesser (1966a) uses N = 18), it is important to reduce the
preceding estimate. Furthermore, the preceding estimate assumes that the coupling integral in
(8.2) has been tabulated beforehand; and although Wigner selection rules and symmetries greatly
reduce the storage required, the number of storage locations scales like N°®.

The alternative approach is to generalize Orszag’s method. To do this, we first use (3.19) to

introduce
F(0,¢) = a) by 2 el
N N
=[ S Ay (0, ew’][ > Bm(e,m)eimw], (8.4)
myg=—N MﬂZ—N
N n o n 1
where o) = % S(=)ma(m) () o) dh 0, (.5)

and B,, is the same but with a,,, replaced by 5,,. Secondly, introduce

) = 5 (=) (o (8 L e (89
From (3.19) and (8.1),
FO9) = 3 gal0, st €, (5.7)
2N
where m = X ly;”dg,ﬂlw(a). (8.8)

n=|m
Next, following Orszag (1970), introduce a (6, ¢)-grid of points
0;(j=1,...,2N), ¢ (l=1,...,4N).

To employ the Fast Fourier Transform algorithm (F.F.T.), and toinvert (8.7), choose ¢, = wl[2N.
Now proceed to compute %, as follows:
(1) Assume that the quantities
non 1
(=ymeedun) (i _ ) di,(0)

have been tabulated beforehand, requiring about 9V2 real storage locations. Note that negative
m need not be considered since

A-m(enu) = (_)'“A_m(e, “;”/),

reflecting (3.4) and a symmetry property of the rotation matrix element dy ,(6). Calculate
A (0;,p) from (8.5) for u =0, +1; [n—1| <ny <n;j=1,...,2N; m = 0,..., N. This requires
at most v
32x2N Y (N—m+1) ~ ON?
m=0

real x complex multiplications, each followed by a complex addition. Repeating the calculation
for B,, leads to a total of about 36 N3 real multiplications plus additions.

(2) Use the F.F.T. to compute F(0;,¢,) in (8.4). The F.F.Ts of 4,, and B,, in (8.4) each
require about 4 Nlog, N real multiplications plus additions for/ = 1, ...,4N. Lettingj = 1, ..., 2N
and uq, s = 0, + 1, results in a total of about 48 N%log, N real multiplications plus additions.
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(3) Use the identity
13 im( NN — g
—_— m—m =
1 Nz§1 e m>

to invert (8.7) over the (6, ¢)-grid, obtaining

1 4N
&m(0j5 s W) = mlgl F (0, ¢;) e~tmmh2N,

F.F.T. computation of g,,(6;, 4, #t5) for 0 < m < N requires about 4Nlog, N real multiplications
plus additions. Letting j = 1,...,2N and p,, 4, = 0, + 1 gives a total of about 72N2log, N real
multiplications plus additions. Negative m need not be considered since

g—m(enul,:‘%) = (_)ﬂ1+ﬂzzn(0, =M1 _/42)'

(4) Consider (8.8) as representing a set of simultaneous linear equations over the 6-grid.
Assume that the relevant inverse matrices, depending only on the quantities d; , ., (6;) have
been tabulated beforehand, requiring about 12/N3 real locations. Our only restriction on the
choice of 6; is that these inverse matrices do exist. Use these inverse matrices to compute y} for
My=0,%1;4,=0,+1; 0<m<n< N. For each N the number of linear equations involved
is 2N—m+1. Thus, using the inverse-matrix coefficients to compute y% for p, = 0, +1;
My =0, £1;m=0,...,N; n =m, ..., N; requires

N
32y 2N—-m+1)(N—=m+1) ~ 32 N3
m=0
real x complex multiplications, each followed by a complex addition. Thé total number of real
multiplications plus additions is thus about 15N3. Again, negative m has not been considered since
Ya™ (s 1) = (=)™ Y (= 1y — ).
(5) Use the orthogonality of 3-j coefficients to invert (8.6), giving
5 (_)n+n1+,,1/1(”1, ns) (” ny 1 ) (”1 Ny
tas A(m) \py+py —py —py) \ptp 0

Assuming that the coefficients in this sum have been calculated beforehand, requiring about 27N
real locations, computation of #,¢ for n.=0,...,N; |[n—1| < n; < n+1; |y~ 1| < ny < ny+1;
m = 0,...,n; requires at most

Kte) = y )y’"( )
n(2) —py) Im M1 o).

N 34

3 Y (n+1) ~ = N?
n=0 2

real x complex multiplications each followed by a complex addition. That is, about 81N2 real

multiplications plus additions. Negative m has not been considered because of (3.4).

The grand total of real multiplications plus additions required in this generalization of
Orszag’s method is about 51N%+ 120N2log, N. For N > 3 this is a large improvement over the
18 N5 operations previously estimated for computing x,, directly from (8.2). Furthermore,
permanent storage requirements now also scale like N3 rather than N3,

Note finally that the coefficient g7, calculated in step (4) above, is actually the spectral
coefficient of @, b, in the Burridge formalism (see § 6). Thusstep (5) above indicates a numerical
advantage of the Burridge formalism, amounting to about 40N?2 real multiplications plus
additions. This saving is typically only about 5 %, of the grand total of arithmetic operations.
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APPENDIX A. POLAR COMPONENTS OF Y, ;) AND Y,

Rotation matrix elements and scalar spherical harmonics are related via the formula

Di’nbl,:tm(_')/, _IB’ —OC) = ei(My:tma)d:’ﬁm’M(ﬂ)

(n—m)!

3
= My mym
( ) [(2n+1)|(n+m)|] Liyn(ﬁ>7) (A 1)
Here, L7 represents m successive applications of the differential operators defined by

L, = —ieii"‘(—cotﬂ%ii%+cosecﬁ%).

Introduce the abbreviations
Y=Yn0,¢), E=0Y[00, F=0%Y[00%? G = cosectoY[op, H = 3G[06.
Then, puttinga = 0in (A 1) and letting m take the values 0, 1, 2, yields equations equivalent to
d o(6) e = ¥,
g 1(6) e = [n(n-+1) (2n+ 1)]-4 (E+iG),
dp 1(0) etm$ = [n(n+1) (2n+1)]~2( - E+iG),

7 im¢ — ig)_'__.
dn,—2(9) € [(2n+ )t o)
(n—2)!
(2n+1) (n+2)!

Substituting these results into (3.19), with £ = 1 and k& = 2, gives the polar forms of ¥, and
Yoo:
[n(2n+1)]} Y, ,_; =nYe,+ Eey+ Gey,

[n(n+ 1)} Y, , = iGe,—iEe,,

]% [2F+2iH +n(n+1) Y],

dmy o(0) elmé = [ ]%[2F— 2iH +n(n+1)Y].

[(n+1) (2n+1)]}Y, 1 =—(n+1) Ye, + Ee,+ Ge,,
[ﬂ(ﬂ-— 1) (2”— 1) (27l + 1)]% Yn, n—1, n—2
=n(n—1) Ye,e,+ (n—1) Ee,ey+ (n—1) Ge, e, + (n—1) Eeye,
+ (nY +F)eqse,+ Hepey+ (n—1) Geye, + Heyey— (F+n2Y) ey ey,
ln[(n_ 1) (27l + 1)]% Yn, n—1,n—1
= (1—n) Geye,— Heyey+ (F+n?Y)eyey
+(n—1) Eeye,+ (F+nY)e e, + He ey,
n[4n?—11}Y, ., , = —n*Ye,e,—nEe,e,—nGe,e;+ (n—1) Eeye,
+ (nY +F)eye,+ Hezey+ (n—1) Geye, + Heyey— (F+n2Y) egey,
in[(2n+1) (n+1)12Y,, 40
= —nGe,e,+nke, e, +Geze,— Heyey+ Feyey
—Eeye, +[F+n(n+1)Y]e,e,+ Heye,,

nin+1)Y, , ,=—Eeye.+[F+n(n+1)Y]eye,+Heses—Geye, +Heye,— Feyey,
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l(n + 1) [n(2n+ 1)]% Yn, n, n+1
= (n+1)Ge,e,— (n+1) Ee.e,+Geye.— Heyey+ Fege,

—Ee¢er+ [F+7l(n+ 1) Y] e¢eg+He¢e¢,
(n+1)[(2n+3) 2+ 1) Y, i1

=—(n+1)2Ye, e+ (n+1)Ee.ey+ (n+1)Ge,e;— (n+2) Eege,
+[F—(n+1)Y]eye,+ Heye,— (n+2) Geye, + Heye,y

—[F+(n+1)2Y R
in+1)[(n+2) @n+ DY, it nia [F+(n+1)2Y]e e,

= (n+2) Gege,— Hegey+[F+ (n+1)2 Y] eqe,
—(n+2)Eege, +[F—(n+1)Y]ese,+Heyey,
[(o+1) (n+2) (2n+1) (204 3)F Yo, i1 s
= (n+1) (n+2) Ye,e,— (n+2) Ee,e;— (n+2) Ge,e;,— (n+2) Eeye,
+[F—(n+1)Y]ese,+Heyey— (n+2)Geye,+ Heye,
—[F+(n+1)2Y]e e,

ArreNDIX B. ExpriciT FOrRMS OoF 7, SAND 4

S A, n,, nyp for the
trace, trace-free symmetric and antisymmetric components of the rank-2 harmonic Y, , ...

These components are given by (5.10), (5.11) and (5.12) respectively. More explicit forms are
obtained by evaluating the relevant 6-j coefficients:

For the purpose of this appendix, let us adopt the notation T'

n, Ny, Ngd 0, Ny, Ngd

Tn, n—1,n—2 = 0’

7!

n,n—1,n—2 — Yn, n—1, n—29

=

n,n—1,n—2 = 03

~

n,n—1,n—1 = 0,
n,n—1,n—1 = (27!) _1{(”’ + 1) Yn, n—1, n—1 + (n2 - 1)‘k Yn, n, n—l})
n,n—1,n—1 — (272) _1{(”’ - 1) Yn, n—1,n—1" (nz - 1)% Yn, n, n-l}>

2n—1)%
Tn, n—1,n — ;@F)l—) {(2” - 1)% Yn, n—1,n " (272 + 1)% Yn, n,n + (2n+ 3)% Yn, n+l, n}3

= 0

Sn, n—1,n = [671.(2?1-{- 1)]_1{(""" 1) (2n+ 3) Yn, n—l,n+ (2n+3) [(272_ 1) (272 + I)J%Yn, N, N
+n[(2n_ 1) (272 + 3)]%Yn,n+l,n}:

2n—1)%
An, n—1,n = 2_(7,7(5;:_%7{(” + 1) (2n_ 1)% Yn, n—-1,n" (2n+ 1)% Yn, n,n —n(2n+ 3)4lf Yn, n+l,n})
Tn, n,n—~1 = 0)
n—1\%
Sn, n,n—1 = (m) Sn, n—1, n—1s
n+1\?
An, n,n—1 = (n — 1) An, n—1, n—1s
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2n+1\3%
T, nn = T (272—1) T, i
(4n2—1)%
Sn,n,n = n+ 1 n, n—1, ny
1 (2n+41\%
An,n n = _m (’212—__1) An, n~1, ns
n,n, n+l = 03
) (n+2)%

/
A

Sn, n, n+l = m {(n + 2)1} Yn, nontl T nk Yn, n+1, n+1}’

n?

An, n,n+1 — 2(T+_1')" {n%Y RS (72 + 2)% Yn, n+1, n+1}’

2n + 3\ %
n,nt+l,n m Tn, n—1,n»

T
n (2n—1\%
Sn, n+l,n = (——'—') Sn, n—1,ns

1
—

NI
OH
e
)
=0
=w

n+1\2n+3

n [2n+3\?%
An, n+l,n = “m (2n__ 1) An, n—-1,n

T

n, n+1, n+1

1=

b
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Sn, n+l,n+l = (;_71_2) Sn, n, n+1s
A _ (n + 2)% A
n,n+l,n+l — T T n, n, n+1s
Tn, n+l, n+2 = 0,
Sn, n+l,n+2 = Ln,n+l, n+2
An, nt+l,n+2 = 0.
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